Wednesday, August 26, 2015

HTET 2013 PASS CANDIDATES IN JBT KI MERIT LIST CAT. 01 AND 02

HARYANA STAFF SELECTION COMMISSION, PANCHKULA Post-Primary Teacher (Cat. No. 1) ADVT. NO-2/2012 Whereas, in pursuant to the orders of the Hon’ble Punjab & Haryana High Court, Chandigarh dated 29.4.2015 passed in CWP No. 346 of 2013-Antim Kumari Vs. State of Haryana & ors. and other connected matters, the result showing Roll Number and category was declared and placed on the website www.hssc.gov.in . on 13.7.2015 with regard to Primary Teachers (PRT) against Advt. No. 2/2012; Now, in compliance with the orders dated May 22, 2014 passed in CWP No. 2201 of 2014 titled Vikas Sharma Vs. State of Haryana & ors., the detailed result of all the candidates, whose result is required to be declared in view of orders passed in Antim kumari’s case supra, along with the information as ordered to be displayed, is hereby placed on website for a period of three weeks with facility of downloading it on 25.08.2015 at 5:00 P.M.
Sr.No RollNo Applicant Name Category Academic Total Viva G.Total 1 44400050 BABITA D/O BHAG CHAND BCA ... Reject 0 0
 2 44400345 BHAGWANTI DEVI D/O RAM PAL SC ... 47.53 19 66.53
 3 44400510 Bijender Kumar S/O Purshotam Dass Saini BCb ... 39.94 10 49.94
 4 44400568 BINDU BALA D/O MOHAN LAL GEN ... 37.67 13 50.67 S/O BALRAJ MALIK
TO SEE FULL LIST CLICK BELOW
Advt.No.02/2012Result detail of candidates for the post of PRT Cat.No.01pdffile (1009 KB)
Advt. No.02/2012Result Detail of candidate for the post of PRT Cat.No.02pdffile (310 KB)

Saturday, July 25, 2015

A INSPIRING STORY WE MUST READ

ये कहानी में बहुत बड़ी सीख है 
शिव जी का तंत्र - एक दंत कथा
बहुत समय पहले की बात है एक बड़ा सा तालाब था उसमें सैकड़ों मेंढक रहते थे। तालाब में कोई राजा नहीं था, सच मानो तो सभी राजा थे। दिन पर दिन अनुशासन हीनता बढ़ती जाती थी और स्थिति को नियंत्रण में करने वाला कोई नहीं था। उसे ठीक करने का कोई यंत्र तंत्र मंत्र दिखाई नहीं देता था। नई पीढ़ी उत्तरदायित्व हीन थी। जो थोड़े बहुत होशियार मेंढक निकलते थे वे पढ़-लिखकर अपना तालाब सुधारने की बजाय दूसरे तालाबों में चैन से जा बसते थे।
हार कर कुछ बूढ़े मेंढकों ने घनी तपस्या से भगवान शिव को प्रसन्न कर लिया और उनसे आग्रह किया कि तालाब के लिये कोई राजा भेज दें। जिससे उनके तालाब में सुख चैन स्थापित हो सके। शिव जी ने प्रसन्न होकर नंदी को उनकी देखभाल के लिये भेज दिया। नंदी तालाब के किनारे इधर उधर घूमता, पहरेदारी करता लेकिन न वह उनकी भाषा समझता था न उनकी आवश्यकताएँ। अलबत्ता उसके खुर से कुचलकर अक्सर कोई न कोई मेंढक मर जाता। समस्या दूर होने की बजाय और बढ़ गई थी। पहले तो केवल झगड़े झंझट होते थे लेकिन अब तो मौतें भी होने लगीं।
फिर से कुछ बूढ़े मेंढकों ने तपस्या से शिव जी को प्रसन्न किया और राजा को बदल देने की प्रार्थना की। शिव जी ने उनकी बात का सम्मान करते हुए नंदी को वापस बुला लिया और अपने गले के सर्प को राजा बनाकर भेज दिया। फिर क्या था वह पहरेदारी करते समय एक दो मेंढक चट कर जाता। मेंढक उसके भोजन जो थे। मेंढक बुरी तरह से परेशानी में घिर गए थे।

TGT इंग्लिश के 1035 पदों के लिए आवेदन मांगे

 चंडीगढ़। हरियाणा कर्मचारी चयन आयोग ने शिक्षा विभाग में टीजीटी इंग्लिश श्रेणी-सी के 1035 पदों की सीधी भर्ती के लिए ऑनलाइन आवेदन आमंत्रित किए हैं। ऑनलाइन आवेदन 21 अगस्त से 21 सिंतबर तक वेबसाइट www.hssc.gov.in पर किया जा सकता है। इसके बाद वेबसाइट लिंक उपलब्ध नहीं होगा। कर्मचारी चयन आयोग के प्रवक्ता ने बताया कि इन पदों में मेवात कैडर के (पुन:विज्ञापित) कुल 341 पदों के लिए और 694 पद शेष हरियाणा के लिए हैं।

20TH CENTURY MATHEMATICS - HARDY AND RAMANUJAN

 The eccentric British mathematician G.H. Hardy is known for his achievements in number theory and mathematical analysis. But he is perhaps even better known for his adoption and mentoring of the self-taught Indian mathematical genius, Srinivasa Ramanujan. Hardy himself was a prodigy from a young age, and stories are told about how he would write numbers up to millions at just two years of age, and how he would amuse himself in church by factorizing the hymn numbers. He graduated with honours from Cambridge University, where he was to spend most of the rest of his academic career. Hardy is sometimes credited with reforming British mathematics in the early 20th Century by bringing a Continental rigour to it, more characteristic of the French, Swiss and German mathematics he so much admired, rather than British mathematics. He introduced into Britain a new tradition of pure mathematics (as opposed to the traditional British forte of applied mathematics in the shadow of Newton), and he proudly declared that nothing he had ever done had any commercial or military usefulness (he was also an outspoken pacifist). Just before the First World War, Hardy (who was given to flamboyant gestures) made mathematical headlines when he claimed to have proved the Riemann Hypothesis. In fact, he was able to prove that there were infinitely many zeroes on the critical line, but was not able to prove that there did not exist other zeroes that were NOT on the line (or even infinitely many off the line, given the nature of infinity). Meanwhile, in 1913, Srinivasa Ramanujan, a 23-year old shipping clerk from Madras, India, wrote to Hardy (and other academics at Cambridge), claiming, among other things, to have devised a formula that calculated the number of primes up to a hundred million with generally no error. The self-taught and obsessive Ramanujan had managed to prove all of Riemann’s results and more with almost no knowledge of developments in the Western world and no formal tuition. He claimed that most of his ideas came to him in dreams. Hardy was only one to recognize Ramanujan's genius, and brought him to Cambridge University, and was his friend and mentor for many years. The two collaborated on many mathematical problems, although the Riemann Hypothesis continued to defy even their joint efforts A common anecdote about Ramanujan during this time relates how Hardy arrived at Ramanujan's house in a cab numbered 1729, a number he claimed to be totally uninteresting. Ramanujan is said to have stated on the spot that, on the contrary, it was actually a very interesting number mathematically, being the smallest number representable in two different ways as a sum of two cubes. Such numbers are now sometimes referred to as "taxicab numbers". It is estimated that Ramanujan conjectured or proved over 3,000 theorems, identities and equations, including properties of highly composite numbers, the partition function and its asymptotics and mock theta functions. He also carried out major investigations in the areas of gamma functions, modular forms, divergent series, hypergeometric series and prime number theory. Among his other achievements, Ramanujan identified several efficient and rapidly converging infinite series for the calculation of the value of π, some of which could compute 8 additional decimal places of π with each term in the series. These series (and variations on them) have become the basis for the fastest algorithms used by modern computers to compute π to ever increasing levels of accuracy (currently to about 5 trillion decimal places). Eventually, though, the frustrated Ramanujan spiralled into depression and illness, even attempting suicide at one time. After a period in a sanatorium and a brief return to his family in India, he died in 1920 at the tragically young age of 32. Some of his original and highly unconventional results, such as the Ramanujan prime and the Ramanujan theta function, have inspired vast amounts of further research and have have found applications in fields as diverse as crystallography and string theory. Hardy lived on for some 27 years after Ramanujan’s death, to the ripe old age of 70. When asked in an interview what his greatest contribution to mathematics was, Hardy unhesitatingly replied that it was the discovery of Ramanujan, and even called their collaboration "the one romantic incident in my life". However, Hardy too became depressed later in life and attempted suicide by an overdose at one point. Some have blamed the Riemann Hypothesis for Ramanujan and Hardy's instabilities, giving it


HTET ME DO BAAR LAGEGA THUMB IMPRESSION

HTET - एचटेट परीक्षार्थी को दो बार देने होंगे थम्ब इंप्रेशन . भिवानी(ब्यूरो)। एआईएमपीटी पेपर लीक कांड को जेहन में रखते हुए हरियाणा विद्यालय शिक्षा बोर्ड एचटेट परीक्षा में कोई ‘रिस्क मोल नहीं लेना चाहता है। परीक्षार्थी की व्यक्तिगत पहचान के लिए बोर्ड दोहरा सुरक्षा चक्र अपनाएगा। इस बार दो तरह से थम्ब इंप्रेशन (अगूंठा निशान) लेगा। बायो मीट्रिक मशीन के अलावा स्पेशल स्याही से हर परीक्षार्थी के थम्ब इंप्रेशन लिए जाएंगे। हरियाणा विद्यालय शिक्षा बोर्ड के सूत्र बताते हैं कि परीक्षा केंद्र में एंट्री के बाद ऑनलाइन बायो मीट्रिक थम्ब इंप्रेशन लिया जाएगा। इसके बाद परीक्षा केंद्र के भीतर हर परीक्षार्थी का अंगूठे का निशान खास तकनीक इंकलेस से लिया जाएगा। परीक्षार्थी के फोटो की पहचान पुख्ता करने के लिए बोर्ड हर बार की तरह एडमिट कार्ड पर परीक्षार्थी का फोटो तो देगा ही, साथ ही इस मर्तबा हर अभ्यर्थी के लिए यह अनिवार्य किया गया है कि वह गजेटेड आफिसर अथवा शिक्षण संस्था के प्रमुख से अटेस्टेड अपना फोटो साथ लेकर आएगा। शिक्षा बोर्ड सेक्रेटरी पंकज ने दो बार थम्ब इंप्रेशन व अटेस्टेड फोटो के संबंध में लिये फैसलों की पुष्टि की है।